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Abstract-When a solution containing a non-linear profile of solute concentration is heated from below, 
convection can occur in layers. Observations of this phenomenon are presented, and these are compared 
with calculations based on a simple model. It is concluded that the model contains the essential features of 

the process. 

NOMENCLATURE 

solute diffusion coefficient ; 
convective solute transfer coefficient ; 
acceleration due to gravity ; 
depth of the convecting layer ; 
thermal diffusivity ; 
convective heat transfer coefficient ; 
the Prandtl number of the liquid, 
= v/K; 
the thermal Rayleigh number (positive 

g&h3 destabilizing), = ~ - 
vKp ’ 

the solutal Rayleigh number (positive 

destabilizing), = @$ ; 

a thermosolutal Rayleigh number, 

=R+- ’ 4; 
P+l 

the critical value of R, ; 
kinematic viscosity ; 
a characteristic density of the liquid ; 
the thermal component of the density 
difference between top and bottom of 
the convecting layer ; 
the solutal component of the density 
difference between top and bottom of 
the convecting layer. 

1. INTRODUCMON 

PURE-THWMAL convection occurs in a homo- 
geneous fluid when a sufficient spatial tempera- 
ture variation is imposed on it. A considerable 
amount of experimental and theoretical work 
has been devoted to this phenomenon, both to 
define the conditions for marginal stability, when 
convection is about to begin, and also to achieve 
an understanding of the regime in which veloci- 
ties are large. In certain situations, particularly in 
oceanography and limnology, the fluid is not 
homogeneous, but contains a solute whose 
concentration varies vertically. Since the density 
of the fluid is affected by the solute as well as by 
the heat, and since these two diffuse at different 
rates, the resulting thermosolutal convection 
differs in certain important respects from pure- 
thermal convection. These differences are ex- 
hibited both at marginal stability and at finite 
amplitude ; the question of marginal stability 
has been considered elsewhere [l, 21, and this 
paper is concerned with finite-amplitude effects. 

The first experimental study of thermosolutal 
convection was that of Turner and Stommel[3]. 
In this experiment a container of water, which 
contained dissolved salt with a stabilising 
gradient of concentration, was heated gently 
from below. By means of suspended aluminium 
powder and fluorescein dye it was seen that the 
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resulting convection occurred in layers, The 
layers were formed in turn starting from the 
bottom, and they slowly increased in thickness 
after formation. This observation inspired the 
theoretical study of Veronis [4], which revealed 
a number of the properties of steady-state 
thermosolutal convection, but which failed to 
explain the observed layering. Schaafs [S] 
observed the phenomenon in various liquids 
containing stable solute gradients when they 
were irradiated by light from above, but again 
no explanation was given. 

Turner [6] carried out an experiment which 
was designed to elucidate the characteristics 
of stratiform thermosolutal convection. Instead 
of allowing the layers to appear in an 
uncontrolled manner, he deliberately produced 
a two-layer system. Having set up a sharp 
boundary between the strong and the weak 
solutions by stirring each, he studied the rate at 
which salt and heat were transferred across the 
boundary as a function of the ratio of the contri- 
butions of salt and heat to the density difference. 
The characteristics of even this apparently 
simple system were not immediately under- 
standable, and the results were published in 
graphical form without explanation. No full 
description of the system has yet been published ; 
however a tentative theory [7] has shown that 
the results are consistent, to a reasonable 
approximation, with the following properties : 
(i) The convecting layers are separated by a thin 
region in which heat and solute are transported 
by diffusion only, no convection penetrating 
the region ; (ii) the non-dimensional rate at 
which solute is lifted through a convecting 
layer is proportional to the non-dimensional 
upward heat flow, the solutal Nusselt number 
being perhaps O(10’) times the thermal Nusselt 
number; (iii) the upward heat flow is described 
by an effective Rayleigh number R, in the same 
way as the thermal Rayleigh number R describes 
the convective heat flow in pure-thermal con- 
vection (here R, = R + (P/P + 1) R,, where P 
is the Prandtl number of the liquid and R, is the 
solutal Rayleigh number; ) R/R,] is the ratio of 

the contributions of heat and solute to the 
density difference across the convecting layer) ; 
and (iv) the profiles of temperature and solute 
concentration adjust themselves according to a 
maximum criterionsuch as maximum heat flow 
or maximum R,. 

2. THE FORMATION OF LAYERS 

These observations concerning the probable 
nature of the steady state stratiform convection 
in Turner’s system do not reveal why the Turner- 
Stommel layers should form in the first place ; 
steady-state pure-thermal convection generally 
occurs as a flow which occupies the whole 
depth of the fluid layer. In fact, the first layer 
seems to form because of non-linearity of the 
concentration profile [2]. A typical experiment 
would be carried out in a container whose base 
was made of some substance which was im- 
pervious to solute but not to heat (e.g. brass). 
As a result the gradient of concentration would 
be zero at the bottom of the liquid, so that 
heating from below would produce a density 
gradient which was potentially unstable there. 
Further up, the stabilising effect of the concentra- 
tion profile would exceed the destabilising effect 
of the temperature profile; instability would 
therefore be confined to a thin layer at the 
bottom of the container, Observations, and the 
theory of Veronis [4], suggest that the first 
effect of the convection in this layer is to carry 
solute upwards relatively quickly to form a 
sharp, stable, gradient of density at the top of 
the layer. As the concentration becomes more 
uniform throughout the layer, the heat transfer 
increases, until finally concentration and tem- 
perature are both uniform except near the 
boundaries. 

In considering the initiation of the second 
layer, it is important to remember that the 
diffusion constant for solute is much less than 
that for heat, at least for the aqueous solutions 
so far used for these experiments. Above the 
convecting layer, heat and solute are initially 
transported only by diffusion. The supply of 
heat and solute to this diffusing region would 
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be greatly increased by the development of 
convection in the first layer. But whereas the 
consequent build-up of heat at the top of the 
layer would diffuse quite rapidly into the stable 
region, the solute would be confined to the 
boundary for a much longer period. As a result, 
there would be a region above the first convecting 
layer which would experience a transient in- 
crease of destabilising temperature gradient 
without a corresponding increase of stabilizing 
concentration gradient, which could lead to 
instability in this region and the formation of a 
second convecting layer. Other layers could 
follow by the same process. 

3. OBSERVATIONS 

Figure 1 shows a sequence of records obtained 
during one of a number of experiments similar to 
that of Turner and Stommel. A solution of sugar 
in water, the concentration of which decreased 
upwards, was held in a glass-sided tank whose 
internal dimensions were: length 25 cm, width 
6.4 cm, depth (of liquid) 9.7 cm. Conditions in 
the liquid were monitored optically by what was 
basically a conventional schlieren system. The 
addition of a scanning mechanism also allowed 
quantitative observations, however, and the 
system could be converted rapidly from one 
mode to the other. The main penalty incurred 
for this flexibility was that the usual knife-edge 
was replaced by a vertical series of slits, which 
led to the background illumination of the image 
being confined to a series of horizontal strips. 
Since the middle slit was rather wide, this did 
not in practice obscure the required detail. 

Schlieren observation depends on a variation 
of refractive index of the liquid. In the case of 
aqueous sugar solutions, the refractive index is 
a function of both temperature and concentra- 
tion, but in such a way as to be determined almost 
entirely by the resulting density. Hence in the 
presence of variations of both temperature and 
concentration, the schlieren observations give 
information on the distribution of the resulting 
gradients of density, irrespective of which 
influence is predominant. The initial distribution 

of solute in the solution was determined by a 
measurement shortly before heating began, 
when the fluid was isothermal and the refractive 
index varied with concentration only. Thus each 
curve in Fig. l(a) is a graph of concentration 
gradient versus depth ; since there is no diffusion 
through the top and bottom boundaries, the 
zero of each curve is the line joining its end points. 
The scale is given by the superimposed grid, 
adjacent points of which are separated by OGO28 
g cm-4 in density gradient, or 2 cm in depth. 

The base of the tank was a brass plate 1.25 cm 
thick, which rested on a bath of oil which was 
electrically heated. Figures l(b-n) are a sequence 
of frames exposed after heating of the solution 
represented in Fig. l(a) began. Figures l(b) and 
l(c) show the cellular structure of the convection 
in the first layer at an early stage, and the way 
in which the depth of this layer increased with 
time. In Fig. l(d) the second layer may just be 
seen ; Fig. l(e) is the corresponding density 
gradient profile. Once convection began the 
density gradient trace became somewhat ob- 
scured, but in Fig. l(e) and, particularly, later 
profiles, the main features are clear: each layer 
tended to a state of zero density gradient after 
convection developed in it ; adjacent layers were 
separated by a sharp peak of stable density 
gradient ; a similar peak also occurred above the 
uppermost layer, and above this peak the 
density gradient was progressively reduced 
toward zero. These features are qualitatively in 
accord with the mechanism proposed for the 
formation of the second and later layers. 

Figure l(n) was exposed 95 min after the 
heating current was switched off. Since the 
temperature profile decays by diffusion much 
more rapidly than the concentration profile, this 
frame is substantially indicative of the distribu- 
tion of solute at the end of the experiment. 

The foregoing description of the layering 
process takes no account of horizontal variations 
of the heat and solute flows. Examination of the 
sequence in Fig. 1 shows that once a convecting 
layer has developed past the initial stage of 
having a clear cellular structure, its boundaries 
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remain planar and horizontal to a reasonable 
approximation. Nevertheless departure from 
this condition of horizontal constancy does 
occur, particularly in the early stage when a 
layer is just forming or about to form. The 
profiles in Fig. 1 show this effect, which possibly 
modifies the formation of new layers. In each 
profile, there are five curves recorded simultane- 
ously, displaced laterally about 0.4 cm apart 
across the tank image. In each case, in the region 
where a new layer is forming, these show a 
variation of conditions across the field of view, 
the density gradient showing more marked 
maxima and minima on one side than the other. 

This effect may result from a variation of 
vertical heat flow across the tank caused, for 
example, by cellular flow in the bottom layer. 
Thus the layers and boundaries may form in 
accordance with the postulated mechanism 
where the heat flow is high, but only approxi- 
mately obey it elsewhere. Alternatively, the 
effect may result from the presence of internal 
waves, excited by the underlying motion. In this 
latter case the formation of a new layer may be 
somewhat modified by the motion and the 
possible associated mixing. 

Standing internal waves would represent a 
limitation of the laboratory experiments, since 
they are maintained by the walls of the tank. 
Their effect is likely to diminish as the size of 
the vessel increases, and in a lake or ocean they 
might have no significant influence. It is likely 
that they were not too important in these 
experiments, since the layer development was in 
accordance with expectation, at least 
qualitatively ; but they provide an element of 
doubt as to the extent to which quantitative 
analysis is justified. As a result, no such direct 
analysis has been attempted. Instead, a numerical 
model of the postulated mechanism was de- 
veloped. This was found to give quite similar 
results to those obtained in the experiments, 
which makes it likely that this mechanism is 
basically correct. 

4. THE NUMERICAL MODEL 

The formation of the first convecting layer 

can be described in terms of a known heat flux 
supplied to the tank, and a known preexisting 
distribution of solute [2], but the onset of 
convection in subsequent layers is more com- 
plex. Presumably a similar criterion for marginal 
stability in terms of thermal and solutal Rayleigh 
numbers applies as to the first layer, but the 
fluxes of heat and solute are now uncertain, 
being due in part to the convection in the adjacent 
layer. To predict accurately the development of a 
series of layers would therefore be very difficult, 
both because the layers are interdependent, 
and also because no satisfactory theory is 
available to describe the dependence of the 
solute and heat fluxes on R and R,. It is therefore 
necessary to seek a limited representation of the 
system which is sufficiently tractable to allow 
calculation. 

The model to be described here is a crude one, 
which was not expected to yield accurate results. 
Nevertheless it reproduced the behaviour of the 
laboratory experiments well enough for the 
similarity to be apparent, and it certainly showed 
qualitatively the formation of layers. Its basis 
was the representation of both diffusive and 
convective transfer of solute and heat as dif- 
fusion, the relevant diffusion constant being 
increased in an appropriate way when convec- 
tion was present. The problem was thus con- 
verted to one of diffusion in one dimension 
(vertically) through a series of slabs of variable 
diffusivity and with mobile (horizontal) bound- 
aries In this form it was amenable to numerical, 
though not analytical, solution. Any properties 
of the real system which depend on horizontal 
irregularities were lost in the model ; the degree 
to which the model is successful therefore gives 
an indication of the importance of these effects. 

The model operated as follows. The basic 
information required was a concentration 
gradient profile, in the form ofvalues at a number 
of equally-spaced levels in the tank. This was 
subjected to harmonic analysis and integrated, 
so that at any level in the liquid a value could 
be found for the difference in concentration 
between that level and the bottom of the liquid. 



FIG. 1. (a-f). 

FIG. 1. A sequence of schlieren and scanning-schlieren observations during the development 
of layered thermosolutal convection in a solution of sugar in water. (a) The profile of 
density gradient before heating began, i.e. that due to the profile of solute concentration 
only. In this and the other qualitative observations adjacent points of the superimposed 
grid are separated 2 cm vertically and 0.0028 g cm-4 horizontally. (b) 23 min after heating 
began. In this and the other qualitaGve observations the background illumination is a series 
of horizontal strips. These correspond to the series of traces present in each of the quantitative 
observations. (c) 27 min. (d) 32 min. (e) 34 min. (f) 53 min. Note the development of a stable 
density gradient above the well-developed convecting layer. (g) 62 min. (h) 63 min. (i1 79 
min. (j) 90 min. (k) 91 min. (1) 112 min. (m) 139 min. (n) 222 min after heating began, 
and 95 min. after the heating was switched off. This frame is substantially indicative of the 

distribution of solute at the end of the experiment. 

H.M. (Facing page 218) 



FIG. 1 (g-n). 
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In addition, an initial temperature, and the 
coefficients of an expression defining the growth 
of temperature with time at the bottom botmd- 
ary, were required. The initial temperatures and 
concentrations at a large number (usually 200) 
of equally spaced levels in the “tank” were thus 
calculated. The development of these values 
with time was then calculated for successive 
equal time increments by a simple numerical 
scheme for a small number (usually 10) of time 
steps. This simple scheme was stable only for 
small time increments, but gave a new profile 
in terms of the immediately preceding one only, 
and was a useful “starting” scheme. The 
“running” scheme was based on a numerical 
solution of the heat-conduction equation due 
to Du Fort and Frankel [S], and involved both 
the two preceding profiles. This scheme was 
stable for large time increments (or large 
diffusivities) and was therefore more suitable 
for the calculation of conditions after the onset 
of convection. 

In accordance with the interpretation of 
Turner’s experiment (conclusion (iii)) mentioned 
in the Introduction, the heat-transfer coefficient 
for a convecting layer was assumed to be K,(R,), 
where K,(R) is the heat-transfer coefficient in 
pure-thermal convection. Heat flow measure- 
ments in the pure-thermal case have been made 
by Malkus [9], who found that the convective 
heat transport varies linearly with Rayleigh 
number; but that there are several discrete 
transitions in the character of the convection, 
at each of which the slope of the line changes, 
increasing with increasing heat flow. These 
experiments have been variously interpreted by 
Malkus [lo], Malkus and Veronis [ll], and 
Elder [12]. However we are concerned here 
with the actual results rather than their explana- 
tion, and these have been substantially con- 
filmed by later measurements by Thomas and 
Townsend [13] and Globe and Dropkin [14]. 
It is not difficult to find an empirical relation- 
ship which represents these measurements 
tolerably well ; the main requirements are that 
the heat-transport coefficient must (a) be con- 

tinuous, (b) be equal to the molecular value 
when the heat flow is less than or equal to that 
required to induce marginal convective stability, 
and (c) vary as the one-third power of the Ray- 
leigh number when the latter is high. The 
expression which was thus derived for K,(R,) 
was 

R, > R,,: K, = K [l+ 0.72 (RJR,,)+ 

x (1 - R,c/R,)l 
I 
(1) 

R,<R,,: K,=K 

Here K is the molecular value of the thermal 
diffusivity, and R,, is the critical value of R,, for 
which stability is marginal. The pure-thermal 
form of(i), in which R and R, replace R, and R,,, 
matches the results of Malkus within 3 per cent 
at all the transition points, and both forms 
satisfy the above requirements (a)--(c). It must 
be noted here that (1) describes the heat transfer 
in the steady state only. It will be seen later that 
it had to be modified in order to take account 
of time-dependent effects. 

Once the running solution had been estab- 
lished, the profiles were scanned after each 
pair of time increments to determine whether 
R, was positive (i.e. potentially unstable) between 
any two neighbouring levels. Starting at any 
such point, the upper and lower bounds of a 
search layer were extended until R, was maxim- 
ized. Then if this maximum value exceeded R,,, 
all the levels within the layer were assigned a 
new K, and D, (where D, is the solute transfer 
coeflicient). 

The question of how to assign the value of D, 
was decided by experiment, bearing in mind 
that the effect of convection on the solute 
transfer rate is initially much larger than the 
corresponding thermal effect. In modelling 
tank experiments it was found satisfactory to 
write : 

R, > R,,: D,=K,-K+D 

R,<R,: D,=D I 
(2) 

Since K - 10’0, the fractional increase in 
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transfer rate of solute was about 100 times that 
of heat when convection began. This lies between 
the limits of 1 and lo4 predicted by the theory 
of Veronis [4] for large- and small-amplitude 
convection respectively. 

5. RESULTS 

The results of a run in which the conditions 
modelled those of the experiment from which 
Fig. 1 was obtained are shown in Figs. 2,3 and 4. 
The graphs of concentration and temperature 
in Figs. 2 and 3 show clearly the way in which an 
initially smooth density profile is broken into 
steps by the convection, the density contrast 
between adjacent steps being maintained by the 
low diffusion constant of the solute in the non- 
convecting regions. The concentration profiles 

10 r 
0 min’, T I:// ‘( 139 min 

- Convection 
. . . _ _ _ - Diffusion 

Concentration 

FIG. 2. Concentration profiles calculated according to the 
model. The initial concentration gradient profile used was 
that shown in Fig. l(a), and the heating rate was that which 
obtained during the experiment from which the other 
observations of Fig. 1 were drawn. The profiles were calcu- 

lated for the times indicated after heating began. 

10 r 

--------Conduction 

-ConvectiM 

Temperature, ‘C 

FIG. 3. Temperature profiles calculated according to the 
model, as for Fig. 2. 

also show the way in which two layers may 
amalgamate. The two layers present up to 79 
min have a steadily decreasing difference of 
concentration. By 91 min this has diminished 
to the point at which convection has occurred 
over the whole region, speedily extinguishing 
any remaining contrast. 

It is clear from the graphs that, while the 
numerical scheme is apparently stable, it is not 
free of errors, which seem to arise mainly when 
diffusion constants are reassigned. Such errors 
are shown particularly by the density gradient 
profiles, where their magnitudes are emphasized 
by the differentiation. They do not seem serious 
enough to affect the results significantly. 

A further limitation of the method, not shown 
by these graphs, is that the time-development 
of the concentration and temperature profiles 
within a convecting layer is not well represented. 
Diffusion in a system of scale length h and 
diffusion constant X has a characteristic time 



t = h2/X. The time development of pure- 
thermal convection has been studied for a 
particular configuration by Foster [15], and 
the results show characteristic times of order 
lo- 3 h2/X, where X is here the thermal dif- 
fusivity. It is not possible to deduce a general 
expression from Foster’s results; but it seems 
very likely that not only is the characteristic 
time for the growth of convective disturbances 
very short, but that also it depends on h in a 
manner different from that appropriate to 
diffusion. Now K, in the model was chosen 
initially to provide the correct heat transfer 
rate through the convecting layers in the steady 
state. Foster’s results show that this choice is 
incompatible with a realistic representation of 
the time-development of the profile within a 
layer, and furthermore it seems likely that the 
degree of incompatibility depends on the scale 
of the system. 

h 10 
I \ 

I \ 
8 91 min 

32 min 

6 

_k!- 
4 

2 

co- I 
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62 min 
5 6- 115 min 
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r;4- -=3 
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2- 
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To meet this difficulty, the dependence of K, 
on R, in the model was increased until reason- 
able results were obtained. The graphs shown in 
Figs. 24 were obtained by increasing by a 
factor 10 the convective component of K, and 
D,, that is, 

R, > R,,: K, = K[l + 7.2 (RJR,,)+ 

x (1 - R,,/R,)I 
R,<R,,: K,=K 
with D, evaluated according to (2). 

While the agreement between the experi- 
mental and the model results is quite close, 
the difficulties discussed above limit the quanti- 
tative validity of the method. Although a 
continued search for better ways of evaluating 
K, and D,, and longer computations using a 
liner mesh spacing, would yield more impressive 
results than those exhibited, the limit of credi- 
bility has probably been reached. The important 

R- 139 min 

6- 
0 

4- 2-1 

Density gradient. 
+I.05 

I I I ! 
0 -005 -01 -0.15 -0~25 

per cent/mm 
-0.2 

Density qradht. per canilmm 

FIG. 4. Density gradient profiles calculated according to the model, as for Fig. 2. 
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points are (i) that the problems of quantitative 
accuracy of the model are not sufficiently 
important to prevent a meaningful comparison 
of the model results with those of the cor- 
responding experiment, (ii) that the model and 
experimental results agree sufficiently closely 
to show that the model is an adequate description 
of the process, and that the effects of horizontal 
irregularities are not important, and (iii) that the 
model is based on a simple description of the 
convective process entirely in terms of Rayleigh 
numbers, but reproduces the behaviour observed 
in experiments quite well. To the extent that this 
description is valid, the dimensionless character 
of the Rayleigh numbers removes any problems 
of scale, and the model method may be applied 
to a system of any size. 
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R~Lorsqu’une solution contenant un prolil non-lineaire de concentration du solute est chauffe 
par en-dessous, la convection peut se produire sous forme de couches. On prbente des observation de ce 
phenom&ne, et celles-ci sont cornpar& avec des calculs bases sur un modele sur un modble simple. On 

en conclut que le mod&e contient les caracttristiques essentielles du processus. 

Zrsaammenfamrmg-Wird eine Losung mit nicht-linearem Konzentrationsprofil von unten beheizt, so 
so kann eine Konvelction in Schichten erfolgen. Beobachtungen dieses Phiinomens werden gezeigt und mit 
Berechnungen an einem einfachen Model1 verglichen. Es wird angenommen, dass das Model1 alle wesent- 

lichen Vorgiinge dieses Problems umfasst. 

AHHOTBQU~--I~~M BarpeBe CH!ISY pacTB0pa c HeitBH&HJ,lM IIpO@UN?M BOHHBHTpauMB 
paCTBOpeHHOr0 BemBCTBa MOH(cT B03HHHaTb KOHBeHtHiR B CJtOfiX. IIpBBOnRTCR pe3yJfbTaTBt 
Ha6JttOABHHH BTOrO RBJEHHR, HOTOPbIe CPaBHHBElIOTCR C pXWTElM%f, IIpO#?JIaHHbJMXi Ha 
IIpOCTOt MOp3III. j+XIaeTCJS BbIBOH, 'IT0 BbI6paHHafl MOAWIb COrJIaCyeTCH C C)'IIWCTBeHHbIMH 

OCO6BHHOCTRMH BTOI'O IIpO~eCCa. 


